Contents

UNIT I

Introduction to Physiology: The Cell and **General Physiology**

CHAPTER 1

Functional Organization of the Human Body	
and Control of the "Internal Environment"	3
Cells Are the Living Units of the Body	3
Extracellular Fluid—The "Internal Environment"	3
Homeostasis—Maintenance of a Stable Internal Environment	4
Control Systems of the Body	7
Physiological Variability	10
Sex Differences in Physiology and Pathophysiology	10
Summary—Automaticity of the Body	-
CHAPTER 2	15

The Cell and Its Functions	13
Organization of the Cell	13
Cell Structure	14
Functional Systems of the Cell	21
Locomotion of Cells	26

CHAPTER 3

Genetic Control of Protein Synthesis, Cell Function, and Cell Reproduction
Cell Nucleus Genes Control Protein Synthesis
Transcription—Transfer of Cell Nucleus DNA Code to Cytoplasm RNA Code
Translation—Formation of Proteins on the Ribosomes
Protein Enzymes Control Synthesis of Other Substances in the Cell
Regulation of Gene Function and Biochemical Activity in Cells
The DNA–Genetic System Controls Cell Reproduction
Cell Differentiation
Apoptosis—Programmed Cell Death
Cancer

UNIT II

Membrane Physiology, Nerve, and Muscle

CHAPTER 4

Transport of Substances Through Cell	
Membranes	51
The Cell Membrane Is a Lipid Bilayer With Cell Membrane Transport Proteins	51
Diffusion	52
Active Transport of Substances Through Membranes	58
CHAPTER 5	
Membrane Potentials and Action	
Potentials	63
Basic Physics of Membrane Potentials	63
Resting Membrane Potential of Neurons	65
Neuron Action Potential	67
Propagation of the Action Potential	71
In portance of Energy Metabolism for	
Reestablishing Sodium and Potassium Ionic	
Cunule ad	72
Plateau is some Action Potentials	72
Rhythmic y of Some Excitable Tissues—	
Repetitive uncharge	73
Special Characteristics of Signal Transmission	
in Nerve Trunks	74

74 Excitation—The Process of Eliciting the Action Potential 75

37 **CHAPTER 6**

31 31

33

46

38	Contraction of Skeletal Muscle	79
	Physiological Anatomy of Skeletal Muscle	79
39	General Mechanism of Muscle Contraction	81
	Molecular Mechanisms of Muscle Contraction	82
41	Energetics of Muscle Contraction	86
45	Characteristics of Whole Muscle Contraction	87
46		

Excitation of Skeletal Muscle: Neuromuscular Transmission and Excitation-Contraction	
Coupling	93
Neuromuscular Junction and Transmission of Impulses From Nerve Endings to Skeletal	
Muscle Fibers	93
Muscle Action Potential	97
Excitation-Contraction Coupling	97
CHAPTER 8	
Excitation and Contraction of Smooth	

Excitation and Contraction of Smooth	
Muscle	101
Contraction of Smooth Muscle	101
Regulation of Contraction By Calcium lons	103
Nervous and Hormonal Control of Sr. Joth	
Muscle Contraction	105

UNIT III

The Heart

CHAPTER 9

Cardiac Muscle; The Heart as a Pump and Function of the Heart Valves Cardiac Muscle Physiology The Cardiac Cycle	נוד 117 112
Regulation of Heart Pumping	123
CHAPTER 10	
Rhythmical Excitation of the Heart	127
of the Heart	127
the Heart	131
CHAPTER 11	
Fundamentals of Electrocardiography	135
Waveforms of the Normal Electrocardiogram	135
Flow of Current Around the Heart During the Cardiac Cycle	137
Electrocardiographic Leads	138
CHAPTER 12	
Electrocardiographic Interpretation of Cardiac Muscle and Coronary Blood Flow	
Abnormalities: Vectorial Analysis	143
Vectorial Analysis of Electrocardiograms	143
Vectorial Analysis of the Normal	
Electrocardiogram	145
Mean Electrical Axis of the Ventricular QRS and Its Significance	148

Prolonged and Bizarre Patterns of the	
QRS Complex	151
Current of Injury on the Electrocardiogram	152
Abnormalities in the T Wave	155

CHAPTER 13

Cardiac Arrhythmias and Their	
Electrocardiographic Interpretation	159
Abnormal Sinus Rhythms	159
Heart Block Within the Intracardiac	
Conduction Pathways	160
Premature Contractions	162
Paroxysmal Tachycardia	164
Ventricular Fibrillation	165
Atrial Fibrillation	168
Atrial Flutter	169
Cardiac Arrest	170

UNIT IV

The Circulation

CHAPTER 14

150

Overview of the Circulation: Pressure,	
Flow, and Resistance	173
Physical Characteristics of the Circulation	173
Sasic Principles of Circulatory Function	175
interrelationships of Pressure, Flow, and	
Resistance	175
Charner 15	
Vas. ula Distensibility and Functions of	
the Attended and Venous Systems	183
vascular تا stensibility	183
Arterial Pressure Pulsations	184
Veins and Than Functions	188
CHAPTER 16	
The Microcirculation and Lymphatic	
System: Capillary Fluid Exchange,	
Interstitial Fluid, and Lymph Flow	193
Structure of the Microcirculation and	
Capillary System	193
Vasomotion Causes Intermittent Capillary	
Blood Flow	194
Exchange of Substances Between the	105
Blood and Interstitial Fluid	195
Interstitium and Interstitial Fluid	196
Fluid Flitration Across Capillaries	19/
Lymphatic System	201

Conditions That Cause Abnormal Voltages of the QRS Complex

Local and Humoral Control of Tissue **Blood Flow** Local Blood Flow Is Controlled in Response to Tissue Needs

Mechanisms of Local Blood Flow Control	
Humoral Control of the Circulation	

CHAPTER 18

Nervous Regulation of the and Rapid Control of Arte	e Circulation rial Pressure
Nervous Regulation of the	Circulation
Special Features of Nervous Arterial Pressure	s Control of
CHAPTER 19	

Role of the Kidneys in Long-Term Control	
of Arterial Pressure and in Hypercension:	
The Integrated System for Arteria	
Pressure Regulation	231
Renal–Body Fluid System for Arteria	
Pressure Control	231
Role of the Renin-Angiotensin System in 🥏	
Arterial Pressure Control	238
Summary of Integrated Multifaceted	
Systems for Arterial Pressure Regulation 🔪 🦲	24 ³ 5

CHAPTER 20

Cardiac Output, Venous Return, and **Their Regulation**

Normal Values for Cardiac Output at Rest
and During Activity
Control of Cardiac Output By Venous Return—
Frank-Starling Mechanism of the Heart
Methods for Measuring Cardiac Output

CHAPTER 21

Muscle Blood Flow and Cardiac Output
During Exercise; The Coronary Circulation
and Ischemic Heart Disease
Blood Flow Regulation in Skeletal Muscle
at Rest and During Exercise
Coronary Circulation

CHAPTER 22

Heart Failure
Circulatory Dynamics in Heart Failure
Unilateral Left Heart Failure
Low-Output Cardiac Failure—Cardiogenic Shock
Edema in Patients With Heart Failure
Cardiac Reserve
Quantitative Graphic Analysis of Cardiac Failure

Heart Failure With Preserved Ejection Fraction	284
High-Output Heart Failure	285
CHAPTER 23	
Heart Valves and Heart Sounds; Valvular	
and Congenital Heart Defects	287
Heart Sounds	287
Abnormal Circulatory Dynamics in	
Valvular Heart Disease	291
Abnormal Circulatory Dynamics in	
Congenital Heart Defects	293
Use of Extracorporeal Circulation	
During Cardiac Surgery	295
Hypertrophy of the Heart in Valvular and	
Congenital Heart Disease	295
CHAPTER 24	
Circulatory Shock and Its Treatment	297
Physiological Causes of Shock	297
Hypovolemic Shock Due to Hemorrhage	298
Distributive Shock Is Characterized By Severe	

Distributive Shock Is Characterized By Severe Peripheral Vasodilation	303
Obstructive Shock Is Usually Due to Noncardiac Causes of Reduced Cardiac Output	305
Physiology of Treatment in Shock	305
Circulatory Arrest	306

Compartments:

UNIT V

207

207 207 216

219 219

228

2.19

249

249

260

263

263 266

275 275 279

279 280 282

282

The Body Fluids and Kidneys

CUAP	TER 25
keo'''	ion of Body Fluid Compartme
Extra	ellular and Intracellular Fluids;
Edem	a
Inta'	and Output of Fluids and Solute
Bala	anced During Long-Term Steady-S

Inta ' and' Output of Fluids and Solutes Are Balanced During Long-Term Steady-State	
Conditions	309
Body Fluid Consultation Body Fluid Consultation	310
Constituents Extracellular and Intracellular Fluids	311
Measurement of Body Fluid Compartment Volumes—Indicator-Dilution Principle	312
Fluid Exchange and Osmotic Equilibrium Between Intracellular and Extracellular Fluid	314
Volume and Osmolality of Extracellular and Intracellular Fluids in Abnormal States	316
Glucose and Other Solutions Administered	
for Nutritive Purposes	317
Clinical Abnormalities of Fluid Volume Regulation: Hyponatremia and	
Hypernatremia	318
Edema: Excess Fluid in the Tissues	320
Fluids in Potential Spaces of the Body	324

309

The Urinary System: Functional Anatomy	
and Urine Formation By the Kidneys	325
Multiple Functions of the Kidneys	325
Physiological Anatomy of the Kidneys	326
Urine Formation Results From Glomerular Filtration, Tubular Reabsorption, and	
Tubular Secretion	328
Micturition	331

CHAPTER 27

Glomerular Filtration, Renal Blood Flow,	
and Their Control	335
Glomerular Filtration—The First Step in Urine	
Formation	335
Determinants of GFR	337
Renal Blood Flow	340
Physiological Control of GFR and Rena	
Blood Flow	341
Autoregulation of GFR and Renal Blood F	343

CHAPTER 28

Renal Tubular Reabsorption and Secretion	249
Tubular Reabsorption Is Quantitatively Large and Highly Selective	21-
Tubular Reabsorption Includes Passive and Active Mechanisms	34.
Reabsorption and Secretion Along Different Parts of the Nephron	355
Regulation of Tubular Reabsorption	361
Use of Clearance Methods to Quantify Kidney Function	367
CHAPTER 29	
Urine Concentration and Dilution; Regulation of Extracellular Fluid	
Osmolarity and Sodium Concentration	373
Kidneys Excrete Excess Water By Forming Dilute Urine	373
Kidneys Conserve Water By Excreting Concentrated Urine	374
Countercurrent Multiplier Mechanism	376
Control of Extracellular Fluid Osmolarity and Sodium Concentration	383

CHAPTER 30

Renal Regulation of Potassium, Calcium,		
Phosphate, and Magnesium; Integration of		
Renal Mechanisms for Control of Blood		
Volume and Extracellular Fluid Volume	391	
Regulation of Internal Potassium Distribution	391	
Regulation of Renal Potassium Excretion	392	
Regulation of Renal Calcium Excretion and Extracellular Calcium Ion Concentration	397	

Regulation of Renal Phosphate Excretion	400
Regulation of Renal Magnesium Excretion and Extracellular Magnesium Ion	401
Integration of Renal Mechanisms for Control	401
of Extracellular Fluid	401
Distribution of Extracellular Fluid Between Interstitial Spaces and Vascular System	404
Nervous and Hormonal Factors Increase	
Effectiveness of Renal–Body Fluid Feedback Control	405
Integrated Responses to Changes in Sodium Intake	407
Conditions That Cause Large Increases in Blood Volume and Extracellular Fluid	
Volume	408
Conditions That Cause Large Increases in Extracellular Fluid Volume With Normal or	
Reduced Blood Volume	409

CHAPTER 31

Acid–Base Regulation	411
Hydrogen Ion Concentration Is Precisely	
Regulated	411
Acids and Bases—Definitions and Meanings	411
Defending Against Changes in H ⁺	
Concentration: Buffers, Lungs, and Kidneys	412
Buffering of H ⁺ in the Body Fluids	412
Licarbonate Buffer System	413
mosphate Buffer System	415
Proteins Are Important Intracellular Buffers	415
Repuratory Regulation of Acid–Base Balance	416
Ren a Control of Acid–Base Balance	417
Secret of H ⁺ and Reabsorption of HCO ₃ -	
By the Lenal Tubules	418
Combination of Excess H+ With Phosphate	
and Ammoria Buffers in the Tubule	
Generates "N'\w" HCO ₃ ⁻	420
Quantifying Period Acid–Base Excretion	422
Regulation of Fana Tubular H ⁺ Secretion	422
Renal Correction of Acidosis—Increased	
Excretion of H^+ and Addition of HCO_3^-	
to the Extracellular Fluid	423
Renal Correction of Alkalosis—Decreased	
Tubular Secretion of H ⁺ and Increased	45.4
Excretion of HCO3 ⁻	424

Diuretics and Kidney Diseases	429
Diuretics and Their Mechanisms of Action	429
Kidney Diseases	431
Acute Kidney Injury	432
CKD Is Often Associated With Irreversible	
Loss of Functional Nephrons	434

UNIT VI

Blood Cells, Immunity, and Blood Coagulation

CHAPTER 33

Red Blood Cells, Anemia, and	
Polycythemia	447
Red Blood Cells (Erythrocytes)	447
Iron Metabolism	452
Anemias	454
Polycythemia	455

CHAPTER 34

Resistance of the Body to Infection:	
I. Leukocytes, Granulocytes, th	
Monocyte-Macrophage System and	
Inflammation	457
Leukocytes (White Blood Cells) 🛛 🤁	457
Neutrophils and Macrophages Defend Against Infections	459
Monocyte-Macrophage Cell System (Reticuloendothelial System)	460
Inflammation: Role of Neutrophils and	-
Macrophages	462
Eosinophils	464
Basophils	1.72
Leukopenia	CON
Leukemias	405

CHAPTER 35

Resistance of the Body to Infection:	
II. Immunity and Allergy	467
Acquired (Adaptive) Immunity	467
Allergy and Hypersensitivity	477
Sex Differences in Innate and Adaptive Immunity	479

CHAPTER 36

Blood Types, Transfusion, and Tissue and	
Organ Transplantation	481
Antigenicity Causes Immune Reactions of Blood	481
O-A-B Blood Types	481
Rh Blood Types	483
Transfusion Reactions Resulting From	40.4
Mismatched Blood Types	484
Transplantation of Tissues and Organs	485
CHAPTER 37	
Hemostasis and Blood Coagulation	487
Hemostasis Events	487
Mechanism of Blood Coagulation	489
Conditions That Cause Excessive Bleeding	
in Humans	494
Thromboembolic Conditions	496
Anticoagulants for Clinical Use	497
Blood Coagulation Tests	497

UNIT VII

Respiration

CHAPTER 38

Pulmonary Ventilation	501
Mechanics of Pulmonary Ventilation	501
Pulmonary Volumes and Capacities	504
Alveolar Ventilation	507

CHAPTER 39

Pulmonary Circulation, Pulmonary	
Edema, and Pleural Fluid	513
Physiological Anatomy of the Pulmonary	
Circulatory System	513
Pressures in the Pulmonary Circulatory System	513
Blood Volume of the Lungs	514
Blood Flow Through the Lungs and Its	
Distribution	514
Effect of Hydrostatic Pressure Gradients in the	
Lungs on Regional Pulmonary Blood Flow	515
Pulmonary Capillary Dynamics	517
Fluid in the Pleural Cavity	519

CHAPTER 40

Principles of Gas Exchange; Diffusion of
Oxygen and Carbon Dioxide Through
Respiratory Membranes521Compositions of Alveolar Air and
Atmospheric Air Are Different523Conjusion of Gases Through the Respiratory
Membrane525

CHALLER 41

Transport of Oxygen and Carbon	
Dioxide in Blood and Tissue Fluids	531
Transpol. of Oxygen From the Lungs to	
the Body Tissur's	531
Transport of CC2 in Blood	538
Respiratory Exchange Ratio	540

CHAPTER 42

_

Regulation of Respiration	541
Respiratory Center	541
Chemical Control of Respiration	543
Peripheral Chemoreceptor System—Role of Oxygen in Respiratory Control	544
Regulation of Respiration During Exercise	547
CHAPTER 43	
Respiratory Insufficiency—Pathophysiology,	
Diagnosis, Oxygen Therapy	551
Methods for Studying Respiratory	
Abnormalities	551

xiii

Contents

Pathophysiology of Specific Pulmonary	
Abnormalities	553
Hypoxia and Oxygen Therapy	556
Hypercapnia—Excess Carbon Dioxide in the Body Fluids	558
Respiratory Resuscitation and Mechanical Ventilators	558

UNIT VIII

Aviation, Space, and Deep-Sea Diving Physiology

CHAPTER 44

Aviation, High Altitude, and Space	
Physiology	563
Effects of Low Oxygen Pressure on tile Pody	563
CHAPTER 45	

CHAPTER 45

Physiology of Deep-Sea Diving and	
Other Hyperbaric Conditions	571
Effect of High Partial Pressures of Individual Gases on the Body	571
Self-Contained Underwater Breathing Apparatus (SCUBA) Diving	575

UNIT IX

The Nervous System: A. General Principles and Sensory Physiology

CHAPTER 46

Organization of the Nervous System, Basic Functions of Synapses and	
Neurotransmitters	579
General Design of the Nervous System	579
Major Levels of Central Nervous System Function	581
Comparison of the Nervous System to a Computer	582
Central Nervous System Synapses	582
Special Characteristics of Synaptic Transmission	595
CHAPTER 47	
Sensory Receptors and Neuronal Circuits for Processing Information	597
Types of Sensory Receptors and the Stimuli They Detect	597
Transduction of Sensory Stimuli Into Nerve Impulses	598
Signal Intensity Transmission in Nerve Tracts—Spatial and Temporal Summation	602
Transmission and Processing of Signals in Neuronal Pools	603
Instability and Stability of Neuronal Circuits	607

CHAPTER 48

Somatic Sensations: I. General	
Organization, Tactile and Position Senses	609
Classification of Somatic Senses	609
Detection and Transmission of Tactile Sensations	609
Sensory Pathways for Transmitting Somatic Signals Into the Central Nervous System	611
Transmission in the Dorsal Column–Medial Lemniscal System	611
Transmission of Sensory Signals in the Anterolateral Pathway	619

CHAPTER 49

Somatic Sensations: II. Pain, Headache,	
and Thermal Sensations	623
Fast Pain and Slow Pain and Their Qualities	623
Pain Receptors (Nociceptors) and Their	
Stimulation	623
Dual Pathways for Transmission of Pain	
Signals Into the Central Nervous System	624
Pain Suppression (Analgesia) System in the	
Brain and Spinal Cord	626
Referred Pain	628
Visceral Pain	628
Thermal Sensations	632

UNIT X

. ne Nervous System: B. The Special Senses

CHAPTER 51

The Eyer Optics of Vision	637
Physical Crinciples of Optics	637
Optics c , the F /e	640
Fluid System of the Eye—Intraocular Fluid	646

CHAPTER 51

The Eye: II. Receptor and Neural Function	
of the Retina	649
Anatomy and Function of Structural Elements	
of the Retina	649
Photochemistry of Vision	651
Color Vision	655
Neural Function of the Retina	656

The Eye: III. Central Neurophysiology	
of Vision	663
Visual Pathways	663
Organization and Function of the Visual Cortex	664
Neuronal Patterns of Stimulation During	
Analysis of Visual Images	666

740

Eye Movements and Their Control	667
Autonomic Control of Accommodation and Pupillary Aperture	671
CHAPTER 53	
The Sense of Hearing	675
Tympanic Membrane and the Ossicular System	675
Cochlea	676
Central Auditory Mechanisms	681
	001

CHAPTER 54

The Chemical Senses—Taste and Smell	687
Sense of Taste	687
Sense of Smell	691

UNIT XI

The Nervou	is System	: C .	Motor	and
Integrative	Neuroph	ysio	ology	

CHAPTER 55

Spinal Cord Motor Functions; The Cord	
Reflexes	697
Organization of the Spinal Cord for Motor Functions	697
Muscle Sensory Receptors—Muscle Spindles and Golgi Tendon Organs—and Their Roles in Muscle Control	פנ,
Flexor Reflex and the Withdrawal Reflexes	7.:3
Crossed Extensor Reflex	705
Reciprocal Inhibition and Reciprocal Innervation	705
Reflexes of Posture and Locomotion	705

CHAPTER 56

Cortical and Brain Stem Control of Motor Function Motor Cortex and Corticospinal Tract

709
ain Stem 715
e of
716
ain Stem 71 te of 71

CHAPTER 57

Cerebellum and Basal Ganglia Contributions	
to Overall Motor Control	723
The Cerebellum and Its Motor Functions	723
The Basal Ganglia and Their Motor Functions	732
Integration of the Many Parts of the Entire	

Motor Control System 736

CHAPTER 58

Cerebral Cortex, Intellectual Functions of the Brain, Learning, and Memory 739 Division of the Cerebral Cortex 730

Physiological Anatomy of the Cerebral Cortex	739
--	-----

	The Corpus Callosum and Anterior Commissure Transfer Thoughts, Memories, Training, and Other Information Between the Two Cerebral Hemispheres	746
	Thoughts, Consciousness, and Memory	747
	CHAPTER 59	
	The Limbic System and the Hypothalamus— Behavioral and Motivational Mechanisms	
	of the Brain	753
	Activating—Driving Systems of the Brain	753
	Limbic System	756
	The Hypothalamus, a Major Control	
	Headquarters for the Limbic System	757
	Specific Functions of Other Parts of the	764
	Limbic System	/61
	CHAPTER 60	
	States of Brain Activity—Sleen Brain Wayes	
	Epilepsy. Psychoses, and Dementia	765
	Sleep	765
	CHAPTER 61	
	The Autonomic Nervous System and	
	the Adrenal Medulla	777
	General Organization of the Autonomic	
_	Nervous System	777
5	Basic Characteristics of Sympathetic and	
	Parasympathetic Function	//9
	Selective Stimulation of Target Organs By	
	"Mass Discharge"	787
	Construinge	/0/
	CLAF ER 62	
	Cerebral Blood Flow, Cerebrospinal Fluid, and	
	Brain McGabolism	791
	Cerebra Blood Flow	791
	Cerebral Microcirculation	794
	Cerebrospinal Luid System	794
		700

Functions of Specific Cortical Areas

UNIT XII

709

Gastrointestinal Physiology

General Principles of Gastrointestinal	
Function—Motility, Nervous and Hormonal	
Control, Blood Circulation, and Microbiota	803
General Principles of Gastrointestinal Motility	803
Neural Control of Gastrointestinal	
Function—Enteric Nervous System	805
Hormonal Control of Gastrointestinal Motility	807

Functional Movements in the Gastrointestinal Tract	809
Gastrointestinal Blood Flow—Splanchnic	
Circulation	810
Gastrointestinal Microbiota	812
CHAPIER 64	
Propulsion and Mixing of Food in the	045
Alimentary Iract	815
Ingestion of Food	815
Movements of the Small Intesting	817
Movements of the Color	820
Other Autonomic Pofloves That Affect Powel	822
Activity	824
, letting	02.
CHAPTER 65	
Secretory Functions of the Alimentary Tract	825
General Principles of Alimentary Tract	
Secretion	825
Secretion of Saliva	827
Gastric Secretion	829
Pancreatic Secretion	332
Bile Secretion By the Liver	835
Secretions of the Small Intestine	839
Secretion of Mucus By the Large Intestine	8.2
CHAPTER 66	
Digestion and Absorption in the	
Gastrointestinal Tract	841
Digestion of Various Foods By Hydrolysis	841
Basic Principles of Gastrointestinal	
Absorption	845
Absorption in the Small Intestine	846
Absorption in the Large Intestine and	850
Tornation of reces	000
CHAPTER 67	
Physiology of Gastrointestinal Disorders	851
UNIT XIII	
Metabolism and Temperature Regulation	า
Metabolism of Carbohydrates and	064
Formation of Adenosine Triphosphate	861
CHAPTER 69	

Lipid Metabolism	871
Basic Chemical Structure of Triglycerides (Neutral Fat)	871
Transport of Lipids in the Body Fluids	871
CHAPTER 70	
Protein Metabolism	883

CHAPTER /1	
The Liver	889
Physiological Anatomy of the Liver	889
Hepatic Vascular and Lymph Systems	889
Metabolic Functions of the Liver	891
CHAPTER 72	
Dietary Balances; Regulation of Feeding;	
Obesity and Starvation; Vitamins and Minerals	897
Energy Intake and Output Are Balanced	
Under Steady-State Conditions	897
Regulation of Food Intake and Energy	~~~
Storage	899
CHAPTER 73	
Energetics and Metabolic Rate	915
CHAPTER 74	
Body Temperature Regulation and Fever	923
Normal Body Temperatures	923
Body Temperature Is Controlled By	
Balancing Heat Production and Heat Loss	923
Regulation of Body Temperature—Role of the	007
Hypothalamus	927
Abnormalities of Body lemperature	021
Regulation	221

PINT XIV

Fndocrinology and Reproduction	
CHA PTER 75	
Introc action to Endocrinology	937
Coordination of Body Functions By Chemical Messenge	937
Chemical Suracture and Synthesis of Hormones	937
Hormone Secretion, Transport, and Clearance	
From the Blood	941

Mechanisms of Action of Hormones

CHAPTER 76

Pituitary Hormones and Their Control	
By the Hypothalamus	951
Pituitary Gland and Its Relation to the	
Hypothalamus	951
The Hypothalamus Controls Pituitary Secretion	952
Physiological Functions of Growth Hormone	954
Posterior Pituitary Gland and Its Relation	
to the Hypothalamus	961

942

Thyroid Metabolic Hormones	965
Synthesis and Secretion of Thyroid Metabolic	
Hormones	965

Physiological Functions of the Thyroid Hormones	968
Regulation of Thyroid Hormone Secretion	972
c	
CHAPTER 78	
Adrenocortical Hormones	979
Corticosteroids: Mineralocorticoids,	
Glucocorticoids, and Androgens	979
Synthesis and Secretion of Adrenocortical	979
Functions of Mineralocorticoids—Aldosterone	982
Functions of Glucocorticoids	986
	500
CHAPTER 79	
Insulin, Glucagon, and Diabetes Mellitus	999
Insulin and Its Metabolic Effects	999
Glucagon and Its Functions	1008
Summary of Blood Glucose Regulation	1010
CHAPTER 80	
Parathyroid Hormone, Calcitonin, Calcium	
and Phosphate Metabolism, Vitamin D Bone	e,
and Teeth	1017
Overview of Calcium and Phosphate Regulation in Extracellular Fluid and Plasma	017
Bone and Its Relationship to Extracellular	
Calcium and Phosphate	·U19
Vitamin D	1,122
Parathyroid Hormone	1025
Calcitonin	1028
Summary of Control of Calcium Ion Concentration	1029
Physiology of the Teeth	1032
CHAPTER 81	
Reproductive and Hormonal Functions	
of the Male (and Function of the Pineal	
Gland)	1037

Spermatogenesis

Physiological Anatomy of the Female	4052
Sexual Organs	1053
Monthly Ovarian Cycle and Eurotion of	1053
Gonadotropic Hormones	1054
Functions of Ovarian Hormones—Estradiol	1051
and Progesterone	1058
Regulation of Female Monthly Rhythm—	
Interplay Between Ovarian and	
Hypothalamic-Pituitary Hormones	1063
Female Sexual Act	1068
CHAPTER 83	
Pregnancy and Lactation	1073
Maturation and Fertilization of the Ovum	1073
Early Nutrition of the Embryo	1075
Anatomy and Function of the Placenta	1075
Hormonal Factors in Pregnancy	1077
Parturition—Birth of the Baby	1082
Lactation	1085
CHAPTER 84	
Setal and Neonatal Physiology	1089
orts Physiology	
CHACKER 85	
Sports Physiology	1101

Male Sexual Act

and Female Hormones

CHAPTER 82

Testosterone and Other Male Sex Hormones

Female Physiology Before Pregnancy

www.abaatsteb.pub

Video and Audio Contents

CHAPTER 2

The Cell and Its Functions Video 2.1 Endocytosis

CHAPTER 5

Membrane Potentials and Action ⁷ stentials Video 5.1 Action Potential

CHAPTER 6

Contraction of Skeletal Muscle Video 6.1 Skeletal Muscle Cross-Bridge Cyck

CHAPTER 9

Cardiac Muscle; The Heart as a Pump and Function of the Heart Valves Video 9.1 The Cardiac Cycle

CHAPTER 23

Heart Valves and Heart Sounds; Valvular and Congenital Heart Defects Audio 23.1 Normal Heart Sound Audio 23.2 Aortic Stenosis Audio 23.3 Aortic Regurgitation Audio 23.4 Mitral Regurgitation Audio 23.5 Mitral Stenosis

CHAPTER 29

Urine Concentration and Dilution; Regulation of Extracellular Fluid Osmolarity and Sodium Concentration Video 29.1 The Countercurrent Multiplier

CHAPTER 34

Resistance of the Body to Infection: I. Leukocytes, Granulocytes, the Monocyte-Macrophage System, and Inflammation Video 34.1 Chemotaxis

CHAPTER 38

Pulmonary Ventilation Video 38.1 Mechanics of Pulmonary Ventilation

CHAPTER 46

Organization of the Nervous System, Basic Functions of Synapses and Neurotransmitters Video 46.1 Chemical Synaptic Transmission Video 46.2 Neurotransmission

CHAPTER 48

Somatic Sensations: I. General Organization, Tactile and Position Senses Video 48.1 Fine Touch Video 48.2 Pain Pathways

CHAPTER 50

The Eye: I. Optics of Vision

CHAP ER 55 Spinal Cord Motor Functions; The Cord Reflexes Video 55 Muscle Spindle Video 55 Chatella Reflex

CHAPTER (5

General Principles of Gastrointestinal Function— Motility, Nervous and Hormonal Control, Blood Circulation, and Microbiota Video 63.1 Peristalsis

CHAPTER 82

Female Physiology Before Pregnancy and Female Hormones Video 82.1 The Menstrual Cycle www.abaatsteb.pub

Introduction to Physiology: The Cell and General Physiology

www.abaatsteb.pub

Functional Organization of the Human Body and Control of the "Internal Environment"

Physiology is a branch of biology that seeks to explain the *function* of living organisms and their parts, including the physical and chemical mechanisms that are responsible for the origin, development, and procression of life. Each type of life, from the simplest virus to the largest tree or the complicated human being, has sown functional characteristics. Therefore, the vast field of physiology can be divided into viral physiology, bactorial physiology, cellular physiology, plant physiology, mammaliar physiology, human physiology, and many more subdivisions.

Human Physiology. The science of human p^{t} , sectory attempts to explain the specific characteristics and mechanisms of the human body that make it a living being. The fact that we remain alive is the result of complex control systems. Hunger makes us seek food, and fear makes seek refuge. Sensations of cold make us look for warnth Other forces cause us to seek fellowship and to reproduce. The fact that we are sensing, feeling, and knowledgeable beings is part of this automatic sequence of life; these special attributes allow us to exist under widely varying conditions that otherwise would make life impossible.

Human physiology links the basic life sciences with medicine and integrates multiple functions of the cells, tissues, and organs into the functions of the living human being. This integration requires communication and coordination by a vast array of control systems that operate at every level—from the genes that program synthesis of molecules to the complex nervous and hormonal systems that coordinate functions of cells, tissues, and organs throughout the body. Thus, the coordinated functions of the human body are much more than the sum of its parts, and life relies on this total function. Although the main focus of this book is on normal human physiology, we also discuss, to some extent, *pathophysiology*, which is the study of disordered body function and the basis for clinical medicine.

CELLS ARE THE LIVING UNITS OF THE BODY

Each tissue or organ is an aggregate of many different cells held together by intercellular supporting structures.

Each type of cell is specially adapted to perform one or a few particular functions. For example, the red blood cells, numbering about 25 trillion in each person, transport oxygen from the lungs to the tissues. Although the red blood cells are the most abundant cell type in the body, there are also trillions of additional cells of other types that perform functions different from those of the red blood cell. The entire human body contains about 35 to 40 trillion cells.

The many cells of the body often differ markedly from one another but all have certain basic characteristics that are alike. For example, oxygen reacts with carbohydrate, fat, and protein to release the energy required for all cells to function. Furthermore, the general chemical mechanisms for changing nutrients into energy are basically the same in all cells, and all cells deliver products of their chemical reactions into the surrounding fluids.

Almost all cells also have the ability to reproduce additional cells of their own type. Fortunately, when cells of a particular type are destroyed, the remaining cells of this type usually generate new cells until the supply is replenished.

Communities of Microorganisms Living in the Body Outrumber Human Cells. In addition to human cells, trilling of microbes inhabit the body, living on the skin and in the mouth, gut, and nose. The gastrointestinal tract, for example, normally contains a complex, dynamic population of 100 to 1000 species of microorganisms that outnumber currhuman cells. Communities of microorganisms that inhabit the body, often called microbiota, can cause diseases, but most of the time they live in harmony with their human hosts and provide vital functions that are essential for survival of their hosts. Although the importance of gut microbiota for digestion of foodstuffs is widely recognized, additional roles for the body's microbes in nutrition, immunity, and other functions are just beginning to be appreciated and represent an intensive area of biomedical research.

EXTRACELLULAR FLUID—THE "INTERNAL ENVIRONMENT"

About 50% to 70% of the adult human body is fluid, mainly a water solution of ions and other substances. Although

most of this fluid is inside the cells (*intracellular fluid*), about one-third is in the spaces outside the cells (*extracellular fluid*). The extracellular fluid is in constant motion throughout the body. It is transported rapidly in the circulating blood and then mixed between the blood and tissue fluids by diffusion through the capillary walls.

In the extracellular fluid are the ions and nutrients needed by the cells to maintain life. Thus, all cells live in essentially the same environment—the extracellular fluid. For this reason, the extracellular fluid is also called the *internal environment* of the body, or the *milieu intérieur*, a term introduced by the great 19th-century French physiologist Claude Bernard (1813–1878).

Maintenance of the proper concentrations of oxygen, glucose, different ions, amino acids, fatty substances, and other constituents in this internal environment is required for the cells to perform their special functions.

Differences in Extracellular and Intra ellular Fluids. The extracellular fluid contains large amounts of sodium, chloride, and bicarbonate ions plus nut ients for the cells, such as oxygen, glucose, fatty acids, r, a amino acids. It also contains carbon dioxide that is transported from the cells to the lungs to be excreted, plus other cellular waste products that are transported to the κ^{i} large for excretion.

The intracellular fluid contains large amounts of potassium, magnesium, and phosphate ions instead of the sodium and chloride ions found in the extracellular fluid. Special mechanisms for transporting ions through the cell membranes maintain the ion concentration differences between the extracellular and intracellular fluids. These transport processes are discussed in Chapter 4.

HOMEOSTASIS—MAINTENANCE OF A STABLE INTERNAL ENVIRONMENT

In 1929, the American physiologist Walter Cannon (1871–1945) coined the term *homeostasis* to describe the *maintenance of stable conditions in the internal environment*. Homeostasis is a dynamic, rather than static, process that is continually adjusting the body's functions to maintain internal stability despite the challenges of daily life in health, as well as in disease.

Homeostasis occurs at all levels of organization in the body—from the molecular and genetic levels to the cells, tissues, organs, and the whole body. For example, the process of deoxyribonucleic acid (DNA) replication, which is necessary for production of new cells, requires assembly of around 3 to 6 billion nucleotides in correct order to form 20,000 to 25,000 genes that control formation of approximately 100,000 proteins. Each type of cell has different mechanisms that control its gene expression and protein formation. The human body has around 25 to 30 trillion cells, not including another 25 to 30 trillion microorganisms living in the body, usually in symbiosis with the body's cells. Each cell of the body, in turn, has many separate control mechanisms that regulate its function. The cells that make up a tissue communicate with each other via chemical signals and in some cases form organs that have their own internal controls. The organs communicate with each other via the *nervous system* and by releasing different substances, including *hormones* and *extracellular vesicles*; these vesicles are bound by lipids, secreted by cells into the extracellular space, and contain cargo that can alter the function of other cells and organs. How is all of this beautiful complexity that sustains life coordinated? This overall coordination is called homeostasis.

A fundamental principle of homeostasis is that *the function of the whole body is much more than the sum of its parts.* All of the organs and tissues of the body perform their functions, which together help maintain the stable conditions necessary for life. For example, the lungs provide oxygen to the extracellular fluid to replenish the oxygen used by the cells, the kidneys maintain stable ion concentrations, and the gastrointestinal system provides nutrients while eliminating waste from the body.

Body Fluid Constituents Are Normally Regulated Within a Tolerable Range of Values. The various ions, nutrients, waste products, and other constituents of the body are normally regulated within a tolerable range of values, rather than at fixed values. For some of the body's constituents, this range is extremely small. Variations in the blood hydrogen ion concentration, for example, are normally less than 5 *nanomoles/L* (0.000000005 moles/L). It's blood sodium concentration is also tightly regulated, no many varying only a few *millimoles* per liter, even with large changes in sodium intake, but these variations of sodium concentration are at least 1 million times greater than for bourse.

Power'ul control systems exist for maintaining concentrations food in and hydrogen ions, as well as for most of the other ions nutrients, and substances in the body at levels that permit the cells, tissues, and organs to perform their normal functions, despite wide environmental variations and challenged from injury and diseases.

Much of this text is concerned with how each organ or tissue contributes to homeostasis. Normal body functions require integrated actions of cells, tissues, organs, and multiple nervous, hormonal, and local control systems that together contribute to homeostasis and good health.

Homeostatic Compensations in Diseases. *Disease* is often considered to be a state of disrupted homeostasis. However, even with diseases, homeostatic mechanisms continue to operate and maintain vital functions through multiple compensations. In some cases, these compensations may lead to major deviations of the body's functions from the normal range, making it difficult to distinguish the primary cause of the disease from the compensatory responses. For example, diseases that impair the kidneys' ability to excrete salt and water may lead to high blood pressure, which initially helps return excretion to normal so that a balance between intake and renal excretion can be maintained. This balance is needed to maintain life, but, over long periods of time, the high blood pressure can damage various organs, including the kidneys, causing even greater increases in blood pressure and more renal damage. Thus, homeostatic compensations that ensue after injury, disease, or major environmental challenges to the body may represent trade-offs that are necessary to maintain life but that, in the long term, contribute to additional abnormalities of body function. The discipline of *pathophysiology* seeks to explain how the various physiological processes are altered in diseases or injury.

This chapter outlines the different functional systems of the body and their contributions to homeostasis. We then briefly discuss the basic theory of the body's control systems that allow the functional systems to operate in support of one another.

CIRCULATION OF THE BLOOD PROVIDES MIXING AND TRANSPORT OF EXTRACELLULAR FLUID

Extracellular fluid is transported through the body in two stages. The first stage is movement of blood through the body in the blood vessels. The second is movement of fluid between the blood capillaries and the *intercell. tar spaces* between the tissue cells.

Fig. 1.1 shows the overall circulation of blood. All the blood in the circulation traverses the entire circuit an average of once each minute when the body is at rest and as many as six times each minute when a person is extremely active.

As blood passes through blood capillaries, continual exchange of extracellular fluid occurs between the plasma portion of the blood and the interstitial fluid that fills the intercellular spaces. This process is shown in **Fig. 1.2**. The capillary walls are permeable to most molecules in the blood plasma, with the exception of plasma proteins, which are too large to pass through capillaries readily. Therefore, large amounts of fluid and its dissolved constituents *diffuse* back and forth between the blood and the tissue spaces, as shown by the arrows in **Fig. 1.2**.

This process of diffusion is caused by kinetic motion of the molecules in the plasma and the interstitial fluid. That is, the fluid and dissolved molecules are continually moving and bouncing in all directions in the plasma and fluid in the intercellular spaces, as well as through capillary pores. Few cells are located more than 50 micrometers from a capillary, which ensures diffusion of almost any substance from the capillary to the cell within a few seconds. Thus, the extracellular fluid everywhere in the body—including plasma and interstitial fluid—is continually being mixed, thereby maintaining homogeneity of extracellular fluid throughout the body.

ORIGIN OF NUTRIENTS IN THE EXTRACELLULAR FLUID

Respiratory System. Fig. 1.1 shows that each time blood passes through the body, it also flows through the lungs, picking up *oxygen* in alveoli and acquiring oxygen needed by cells. The membrane between the alveoli and the lumen of the pulmonary capillaries, the *alveolar membrane*, is only 0.4 to 2.0 micrometers thick, and oxygen rapidly diffuses by molecular motion through this membrane into the blood.

Gastrointestinal Tract. A large portion of the blood pumped by the heart also passes through the walls of the gastrointestinal tract. Here different dissolved nutrients,

Figure 1.2 Diffusion of fluid and dissolved constituents through the capillary walls and interstitial spaces.

including *carbohydrates*, *fatty acids*, and *ar_no acids*, are absorbed from ingested food into the ext^{*}.ce¹¹ular fluid of the blood.

Liver and Other Organs That Perform Primarily Metabolic Functions. Not all substances absorbed from the gastrointestinal tract can be used in their absorbed form by the cells. The liver changes the chemical compositions of many of these substances to more usable form and other tissues of the body—fat cells, gastrointestir an mucosa, kidneys, and endocrine glands—help modify the absorbed substances or store them until they are needed. The liver also eliminates certain waste products produced in the body and toxic substances that are ingested.

Musculoskeletal System. How does the musculoskeletal system contribute to homeostasis? Were it not for the muscles, the body could not move to obtain the foods required for nutrition. The musculoskeletal system also provides motility that, along with its other homeostatic mechanisms, protects the entire body against adverse surroundings.

REMOVAL OF METABOLIC END PRODUCTS

The Lungs Remove Carbon Dioxide. At the same time that blood picks up oxygen in the lungs, *carbon dioxide* is released from the blood into lung alveoli; the respiratory movement of air into and out of the lungs carries carbon dioxide to the atmosphere. Carbon dioxide is the most abundant of all the metabolism products.

Kidneys. Passage of blood through the kidneys removes most of the other substances from the plasma besides carbon dioxide that are not needed by cells. These substances include different end products of cellular metabolism, such as urea and uric acid, as well as excesses of ions and water from the food that accumulate in the extracellular fluid.

The kidneys perform these functions first by filtering large quantities of plasma through the glomerular capillaries into the tubules and then reabsorbing into the blood substances needed by the body, such as glucose, amino acids, appropriate amounts of water, and many of the ions. Most of the other substances that are not needed by the body, especially metabolic waste products such as urea and creatinine, are reabsorbed poorly and pass through the renal tubules into the urine.

Gastrointestinal Tract. Undigested material that enters the gastrointestinal tract and some waste products of metabolism are eliminated in the feces.

Liver. Among the many functions of the liver is detoxification or removal of ingested drugs and chemicals. The liver secretes many of these wastes into the bile to be eventually eliminated in the feces.

REGULATION OF BODY FUNCTIONS

Nervous System. The nervous system is composed of three major parts—the *sensory input portion*, the *central nervous system* (or *integrative portion*), and the *motor output portion*. Sensory receptors detect the state of the body and its surroundings. For example, receptors in the skin alert us whenever an object touches the skin. The eyes are sensory organs that give us a visual image of the surrounding area. The ears permit us to detect sounds. The central nervous system is composed of the brain end spinal cord. The brain stores information, generates moughts, creates ambition, and determines reactions that are body performs in response to the sensations. Appropriate signals are then transmitted through the motor output portion of the nervous system to carry out one's desites.

An imposed and segment of the nervous system is called the *autom nic system*. It operates at a subconscious level and controls many functions of internal organs, including the level of purping activity by the heart, movements of the gastrointestical tract, and secretion by many of the body's glands.

Hormone Systems Located in the body are endocrine glands, organs and tissues that secrete chemical substances called hormones. Hormones are transported in the extracellular fluid to other parts of the body to help regulate cellular function. For example, thyroid hormone increases the rates of most chemical reactions in all cells, thus helping set the tempo of bodily activity. Insulin controls glucose metabolism, adrenocortical hormones control sodium and potassium ions and protein metabolism, and parathyroid hormone controls bone calcium and phosphate. Thus, the hormones provide a regulatory system that complements the nervous system. The nervous system controls many muscular and secretory activities of the body, whereas the hormonal system regulates many metabolic functions. The nervous and hormonal systems normally work together in a coordinated manner to control essentially all the organ systems of the body.

PROTECTIVE SYSTEMS OF THE BODY

Immune System. The immune system includes white blood cells, tissue cells derived from white blood cells, the thymus, lymph nodes, and lymph vessels that protect the body from pathogens such as bacteria, viruses, parasites, and fungi. The immune system provides a mechanism for the body to carry out the following: (1) distinguish its own cells from harmful foreign cells and substances; and (2) destroy the invader by *phagocytosis* or by producing *sensitized lymphocytes* or specialized proteins (e.g., *antibodies*) that destroy or neutralize the invader.

Integumentary System. The skin and its various appendages (including the hair, nails, glands, and other structures) cover, cushion, and protect the deeper tissues and organs of the body and generally provide a boundary between the body's internal environment and the outside world. The integumentary system is also important for temperature regulation and excretion of wastes, and it provides a sensory interface between the body and the external environment. The skin generally comprises about 12% to 15% of body weight.

REPRODUCTION

Although reproduction may not seem to be a honeo latic function, it helps maintain homeostasis by gen laung new beings to take the place of those that are dying linis may sound like a permissive usage of the term *homeo.tasis*, but it illustrates that in the final analysis, essentially all body structures are organized to help maintain the automaticity and continuity of life.

CONTROL SYSTEMS OF THE BODY

The human body has thousands of control systems. Some of the most intricate of these systems are genetic control systems that operate in all cells to help regulate intracellular and extracellular functions. This subject is discussed in Chapter 3.

Many other control systems operate *within the organs* to regulate functions of the individual parts of the organs; others operate throughout the entire body *to control the communication and interrelationships among the organs*. For example, the respiratory system, operating in association with the nervous system, regulates carbon dioxide concentration in the extracellular fluid. The liver and pancreas control glucose concentration in the extracellular fluid, and the kidneys regulate concentrations of hydrogen, sodium, potassium, phosphate, and other ions in the extracellular fluid.

EXAMPLES OF CONTROL MECHANISMS

Regulation of Oxygen and Carbon Dioxide Concentrations in the Extracellular Fluid. Because oxygen is required for chemical reactions in cells, the body has a special control mechanism to maintain an almost exact and constant oxygen concentration in the extracellular fluid. This mechanism depends principally on the chemical characteristics of *hemoglobin*, which is present in red blood cells. Hemoglobin combines with oxygen as blood passes through the lungs. Then, as blood passes through the tissue capillaries, hemoglobin, because of its own strong chemical affinity for oxygen, does not release oxygen into the tissue fluid if too much oxygen is already there. However, if oxygen concentration in the tissue fluid is too low, sufficient oxygen is released to reestablish an adequate concentration. Thus, regulation of oxygen concentration in the tissues relies to a great extent on the chemical characteristics of hemoglobin. This regulation is called the *oxygen-buffering function of hemoglobin*.

Carbon dioxide concentration in the extracellular fluid is regulated in a much different way. Carbon dioxide is a major end product of oxidative reactions in cells. If all the carbon dioxide formed in the cells continued to accumulate in the tissue fluids, all energy-giving reactions of the cells would cease. Fortunately, a higher than normal carbon dioxide concentration in the blood *excites the respiratory center*, causing a person to breathe rapidly and deeply. This deep rapid breathing increases expiration of carbon dioxide and removes excess carbon dioxide from the blood and tissue fluids. This process continues until the concentration returns to normal.

Regulation of Arterial Blood Pressure. Several systems contribute to arterial blood pressure regulation. One of these, the *baroreceptor system*, is an excellent example of a rapidly acting control mechanism (**Fig. 1.3**). In the walls of the bifurcation region of the carotid arteries in the seck and in the arch of the aorta in the thorax, are many nerve exceptors called *baroreceptors* that are stimulated

Figure 1.3 Negative feedback control of arterial pressure by the arterial baroreceptors. Signals from the sensor (baroreceptors) are sent to the medulla of the brain, where they are compared with a reference set point. When arterial pressure increases above normal, this abnormal pressure increases nerve impulses from the baroreceptors to the medulla of the brain, where the input signals are compared with the set point, generating an error signal that leads to decreased sympathetic nervous system activity. Decreased sympathetic activity causes dilation of blood vessels and reduced pumping activity of the heart, which return arterial pressure toward normal.

by stretch of the arterial wall. When arterial pressure rises too high, the baroreceptors send increased nerve impulses to the medulla of the brain. Here, these impulses inhibit the *vasomotor center*, which in turn decreases the number of impulses transmitted from the vasomotor center through the sympathetic nervous system to the heart and blood vessels. Reduced sympathetic nervous activity diminishes pumping activity of the heart and dilates peripheral blood vessels. Both these effects decrease the arterial pressure, moving it back toward normal.

Conversely, a decrease in arterial pressure below normal relaxes the stretch receptors, allowing the vasomotor center to become more active than usual, thereby causing vasoconstriction and increased heart pumping. The initial decrease in arterial pressure thus initiates negative feedback mechanisms that raise arterial pressure back toward normal.

Normal Ranges and Physical Characteristics of Important Extraculular Fluid Constituents

Table 1.1 lists some important constituents of encacellular fluid, along with their normal values, normal ranges, and maximum limits without causing death. Note the narrowness of the normal range for most of these constituents. Values outside these ranges are often caused by illness, injury, or major environmental challenges.

Most important are the limits beyond which abnormalities can cause death. For example, an increase in the body temperature of only 11°F (7°C) above normal can lead to a vicious cycle of increasing cellular metabolism that destroys the cells. Note also the narrow range for acid–base balance in the body, with a normal pH value of 7.4 yet lethal values only about 0.5 higher or lower than the normal value. Whenever the potassium ion concentration decreases to less than one-third normal, paralysis may result from the inability of the nerves to carry signals. Alternatively, if potassium ion concentration increases to two or more times normal, the heart muscle is likely to be severely depressed. Also, when the calcium ion concentration falls below about one-half normal, a person

is likely to experience tetanic contraction of muscles throughout the body because of the spontaneous generation of excess nerve impulses in peripheral nerves. When the glucose concentration falls below one-half normal, a person frequently exhibits extreme mental irritability and sometimes even has convulsions.

These examples give one an appreciation for the necessity of the vast numbers of control systems that keep the body operating in health. In the absence of any one of these controls, serious body malfunction or death can result.

CHARACTERISTICS OF CONTROL SYSTEMS

The aforementioned examples of homeostatic control mechanisms are only a few of the many thousands in the body, all of which have some common characteristics, as explained in this section.

Many Control Systems Operate By Negative Feedback

Most control systems of the body act by *negative feed-back*, which can be explained by reviewing some of the homeostatic control systems mentioned previously. In the regulation of carbon dioxide concentration, a high concentration of carbon dioxide in the extracellular fluid increases pulmonary ventilation. This, in turn, decreases extracellular fluid carbon dioxide concentration because the lungs expire greater amounts of carbon dioxide from the body. Thus, the high concentration of carbon dioxide init ates events that decrease the concentration toward normal which is *negative* to the initiating stimulus. Conversely, a carbon dioxide concentration that falls too low results in feedback to increase the concentration. This response is also negative to the initiating stimulus.

In the arterial pressure—regulating mechanisms, a high pressure causes a series of reactions that promote compensatory read ations in pressure, whereas a low pressure causes a serie con reactions that promote increased pressure. In both causes, these effects are negative with respect to the initiating cumplus.

Constituent	Normal Value	Normal Range	Approximate Short-Term Nonlethal Limit	Unit
Oxygen (venous)	40	25–40	10–1000	mm Hg
Carbon dioxide (venous)	45	41–51	5–80	mm Hg
Sodium ion	142	135–145	115–175	mmol/L
Potassium ion	4.2	3.5–5.3	1.5–9.0	mmol/L
Calcium ion	1.2	1.0–1.4	0.5–2.0	mmol/L
Chloride ion	106	98–108	70–130	mmol/L
Bicarbonate ion	24	22–29	8–45	mmol/L
Glucose	90	70–115	20–1500	mg/dL
Body temperature	98.4 (37.0)	98–98.8 (37.0)	65–110 (18.3–43.3)	°F (°C)
Acid–base (venous)	7.4	7.3–7.5	6.9–8.0	рН

Table 1.1 Important Constituents and Physical Characteristics of Extracellular Fluid

Therefore, in general, if some factor becomes excessive or deficient, a control system initiates *negative feedback*, which consists of a series of changes that return the factor toward a certain mean value, thus maintaining homeostasis.

Gain of a Control System. The degree of effectiveness with which a control system maintains constant conditions is determined by the gain of negative feedback. For example, let us assume that a large volume of blood is transfused into a person whose baroreceptor pressure control system is not functioning, and the arterial pressure rises from the normal level of 100 mm Hg up to 175 mm Hg. Then, let us assume that the same volume of blood is injected into the same person when the baroreceptor system is functioning, and this time the pressure increases by only 25 mm Hg. Thus the feedback control system has caused a "correction" . - 50 mm Hg, from 175 mm Hg to 125 mm Hg. There remains an increase in pressure of +25 mm Hg, called the "er or" which means that the control system is not 100% effective in preventing change. The gain of the system is then calcr and by using the following formula:

$$Gain = \frac{Correction}{Error}$$

Thus, in the baroreceptor system example, the carection is -50 mm Hg, and the error persisting is +1.5 mm Hg. Therefore, the gain of the person's baroreceptor system for control of arterial pressure is -50 divided by $+2^{5}$ or -2. Thus, the baroreceptor system corrects about two thirds of the initial disturbance and increases or decreases in arterial pressure are only one-third as much as would occur if this control system were not present.

The gains of some other physiological control systems are much greater than that of the baroreceptor system. For example, the gain of the system controlling internal body temperature when a person is exposed to moderately cold weather is about -33. Therefore, one can see that the temperature control system is much more effective than the baroreceptor pressure control system.

Feed-Forward and Adaptive Control Systems Anticipate Changes

Later in this text, when we study the nervous system, we shall see that this system contains great numbers of interconnected control mechanisms. Some are simple feedback systems similar to those already discussed. Many are not. For example, some movements of the body occur so rapidly that there is not enough time for nerve signals to travel from the peripheral parts of the body all the way to the brain and then back to the periphery again to control the movement. Therefore, the brain uses a mechanism called *feed-forward control* to cause required muscle contractions. Sensory nerve signals from the moving parts apprise the brain about whether the movement is performed correctly. If not, the brain corrects the feed-forward signals that it sends to the muscles the *next* time the movement is required. Then, if still further correction is necessary, this process will be performed again for subsequent movements. This process is called *adaptive control*. Adaptive control, in a sense, is delayed negative feedback.

Positive Feedback May Cause Vicious Cycles and Death

Why do most control systems of the body operate by negative feedback or feed-forward rather than by positive feedback? If one considers the nature of positive feedback, it is obvious that positive feedback leads to instability rather than stability and, in some cases, can cause death.

Fig. 1.4 shows an example in which death can ensue from positive feedback. This figure depicts the pumping effectiveness of the heart, showing the heart of a healthy human pumping about 5 liters of blood per minute. If the person suddenly bleeds a total of 2 liters, the amount of blood in the body is decreased to such a low level that not enough blood is available for the heart to pump effectively. As a result, the arterial pressure falls, and the flow of blood to the heart muscle through the coronary vessels diminishes. This scenario results in weakening of the heart, further diminished pumping, further decrease in coronary blood flow, and still more weakness of the heart; the cycle repeats itself again and again until death occurs. Note that each cycle in the feedback results in further weakening of the heart. In other words, the initiating stimulus causes more of the same, which is *positive feedback*.

Positive feedback is sometimes known as a "vicious cycle," but a mild degree of positive feedback can be overcome by the negative feedback control mechanisms of the body, and the vicious cycle then fails to develop. For example, if the person in the aforementioned example plecus only 1 liter instead of 2 liters, the normal negative fe upack mechanisms for controlling cardiac output and arterial pressure can counterbalance the positive feedback, and the person can recover, as shown by the dashed curve of **T**₂. **1.4**.

Figure 1.4 Recovery of heart pumping caused by negative feedback after 1 liter of blood is removed from the circulation. Death is caused by positive feedback when 2 or more liters of blood are removed.

Positive Feedback Can Sometimes Be Useful. The body sometimes uses positive feedback to its advantage. Blood clotting is an example of a valuable use of positive feedback. When a blood vessel is ruptured, and a clot begins to form, multiple enzymes called *clotting factors* are activated within the clot. Some of these enzymes act on other inactivated enzymes of the immediately adjacent blood, thus causing more blood clotting. This process continues until the hole in the vessel is plugged and bleeding stops. On occasion, this mechanism can get out of hand and cause the formation of unwanted clots. In fact, this is what initiates most acute heart attacks, which can be caused by a clot beginning on the inside surface of an atherosclerotic plaque in a coronary artery and then growing until the artery is blocked.

Childbirth is another situation in whe 's positive feedback is valuable. When uterine contractions become strong enough for the baby's head to begin pushing through the cervix, the stretched cervix sends signals through the uterine muscle back to the body of the uterus, causing even more powerful contractions. Thus, the uterine contractions stretch the cervix, and cervice's stretch causes stronger contractions. When this process becomes powerful enough, the baby is born. If they are not powerful enough, the contractions usually die out, and a few days pass before they begin again.

Another important use of positive feedback is for the generation of nerve signals. Stimulation of the membrane of a nerve fiber causes slight leakage of sodium ions through sodium channels in the nerve membrane to the fiber's interior. The sodium ions entering the fiber then change the membrane potential, which, in turn, causes more opening of channels, more change of potential, still more opening of channels, and so forth. Thus, a slight leak becomes an explosion of sodium entering the interior of the nerve fiber, which creates the nerve action potential. This action potential, in turn, causes electrical current to flow along the outside and inside of the fiber and initiates additional action potentials. This process continues until the nerve signal goes all the way to the end of the fiber.

In each case in which positive feedback is useful, the positive feedback is part of an overall negative feedback process. For example, in the case of blood clotting, the positive feedback clotting process is a negative feedback process for the maintenance of normal blood volume. Also, the positive feedback that causes nerve signals allows the nerves to participate in thousands of negative feedback nervous control systems.

Thus, one can see how complex the feedback control systems of the body can be. A person's life depends on all of them. Therefore, much of this text is devoted to discussing these life-giving mechanisms, as well as some of the positive feedbacks that can lead to progressive diseases or even death.

PHYSIOLOGICAL VARIABILITY

Although some physiological variables, such as plasma concentrations of potassium, calcium, and hydrogen ions, are tightly regulated, others, such as body weight and adiposity, show wide variation among different individuals and even in the same individual at different stages of life. Blood pressure, cardiac pumping, metabolic rate, nervous system activity, hormones, and other physiological variables change throughout the day as we move about and engage in normal daily activities. Some variables follow a circadian rhythm, a regular recurring cycle of changes every 24 hours, as discussed in Chapter 59. Therefore, when we discuss "normal" values, it is with the understanding that many of the body's control systems are constantly reacting to perturbations and that variability may exist even in the same individual, depending on the time of day, and among different individuals, depending on body weight and height, diet, age, sex, environment, genetics, and other factors.

For simplicity, discussion of physiological functions often focuses on the "average" 70-kg lean young male. However, the American male no longer weighs an average of 70 kg; he now weighs over 88 kg, and the average American female weighs over 76 kg, more than the average male in the 1960s. Body weight has also increased substantially in most other industrialized countries during the past 40 to 50 years.

ge-related and ethnic or racial differences in physiolog, also have important influences on body composition, physiological control systems, and pathophysiology of diseases. For example, total body water is about 60% to 65.5 of body weight in lean young males and about 50% to 55% n.l. in young females, although there is considerable variation among individuals. As a person grows and ages, this percentage gradually decreases, partly because aging is usually associated with declining skeletal muscle mass and increasing at mass. Aging may also cause a decline in the function among individuences of some organs and physiological control systems.

These source of physiological variability—sex differences, aging, and ethnic differences—are complex but important considerations when discussing normal physiology and the pathophysiology of diseases.

SEX DIFFERENCES IN PHYSIOLOGY AND PATHOPHYSIOLOGY

The term *sexual dimorphism* has traditionally been used to describe two distinct and nonoverlapping traits of males and females from the same species. In humans, sexually dimorphic anatomical features include, for example, the gonads (e.g., testes and ovaries) and the internal and external genitals. However, beyond obvious differences related to reproduction and some physical traits, important sex differences exist for a broad range of physiological