Contents

Fo	rewo	ord	xiii
Pr	eface	e	XV
1	Lev	veraging the Concept of Laser Physics in He	ealthcare 1
	1.1	Introduction	1
	1.2	Physics of Lase [*]	3
		1.2.1 Principle: Jr optics	3
		1.2.2 Laser Gadger	4
		1.2.3 Laser Beam	4
		1.2.3.1 Mone are matic	5
		1.2.3.2 Coherent	5
		1.2.3.3 Collimated	5
	1.3	Laser Classification	6
	1.4	The Workings of a Laser Therapy	6
	1.5	Implications of Lasers on Tissues	8
		1.5.1 Photothermal Impacts	8
		1.5.2 Photochemical Effects	8
		1.5.3 Photomechanical Effects	8
	1.6	Spectroscopy Using a Laser-Induced Breek	down
		Mechanism: Its Use in Medicine and O ⁴¹	. Fields 8
	1.7	Applications of X-Ray and Computerize	Tomography
		Technology in the Healthcare Industry	11
	1.8	Conclusion	15
		References	16
2	Lase	er Surgery in Contemporary Healthcare	23
	2.1	Introduction	23
	2.2	Applications of Laser Therapy in Different	Treatments 25
		2.2.1 Laser Lithotripsy	25
		2.2.2 Brain Surgery	26
		2.2.3 Epilepsy Surgery	27

		2.2.4 Cardiovascular Surgery	28
		2.2.5 Dermatology	30
		2.2.6 Oncology	31
		2.2.7 Oral Surgery and Dentistry	31
		2.2.8 Cataract Surgery	32
		2.2.9 Aesthetic and Reconstructive Surgery	32
		2.2.10 Ablation of the Conductive Pathway	34
	2.3	Conclusion	35
		References	35
3	Mai	nagement of Genitourinary Syndrome Associated	
	witl	n Dyspar an'a with Laser Therapy	43
	3.1	Introductio	43
	3.2	Pathophys ⁱ locy	44
	3.3	Clinical Marifestation	45
		3.3.1 Genita' synaptoms	46
		3.3.2 Sexual Symptoms	46
		3.3.3 Urinary Symptoms	46
	3.4	Laser Modalities at a wiechanism on Tissue	47
	3.5	Laser Therapy for Menopausal Genitourinary Syndrome	49
		3.5.1 CO, Laser	49
		3.5.2 Erbium: Yttriumuminum-Garnet	50
	3.6	Adverse Effects and Complication	60
	3.7	Safety of Laser Therapy	60
	3.8	Conclusion	62
		References	62
4	Ear	ly Detection of Cancer by Laser Therapy	69
	4.1	Introduction	69
	4.2	Photodynamic Therapy	70
		4.2.1 Photosensitizer and Its Component	70
		4.2.2 Mechanism of Photosensitizer	71
	4.3	Laser Therapy Treatment	75
		4.3.1 CO ₂	76
		4.3.2 Argon	77
		4.3.3 NAD: YAG	77
		4.3.4 Low-Level Laser Treatment	79
		4.3.5 Pulse Dye Laser	79
		4.3.6 Potassium Titanyl Phosphate Laser	81
		4.3.7 Intense Pulse Light	81
		4.3.8 Flashlamp-Pumped Dye	82

	4.4	Conc	lusion	83
		Refer	ences	83
5	Use	of a La	iser for Testing and Treating Sepsis	93
	5.1	Intro	duction	93
	5.2	Patho	physiology	94
	5.3	Clinic	cal Manifestation	96
		5.3.1	Laboratory Method	96
			5.3.1.1 Blood Culture	96
			5 3.1.2 Cerebrospinal Fluid Culture	97
			5 .1.3 Urine Culture	98
			5.1.4 Tracheal Aspartate Culture	98
			5.3.1 Superficial Swab Cultures	98
			5.3. ¹ .5 Complete Blood Count Components	
			and Peripheral Smear	98
			5.3.1.7 C-Reactive Protein (CRP)	99
			5.3.1.8 High Censitivity-CRP (hs-CRP)	100
			5.3.1.9 Pro Icitonin (PCT)	100
			5.3.1.10 Ma 11x-Assisted Laser Desorption	
			Ionization-Time of Flight Mass	
			Spectrey (MALDI-TOF)	101
		5.3.2	Molecular Metho	101
			5.3.1.1 Serum Aim Icid A (SAA)	102
			5.3.2.2 Lipopolysac maride Binding Protein (LBP)	102
			5.3.2.3 Cytokines an Chemokines	102
			5.3.2.4 Interleukin- 6 (***- •**	103
			5.3.2.5 Interleukin-8 (IL-o)	103
			5.3.2.6 Tumor Necrosis Factor Alpha (TNF- α)	104
			5.3.2.7 Other Chemokines	104
	5.4	Laser	Treatment for Treating Sepsis	104
		5.4.1	Laser Speckle Contrast Imaging	104
		5.4.2	Laser Doppler Flowmetry	107
	5.5	Conc	lusion	108
		Refer	ences	108
6	Laser Therapy to Treat Diabetic Macular Edema			
	6.1	Intro	duction	119
	6.2	Patho	physiology	120
	6.3	Clinic	cal Characterization	121
		6.3.1	Focal Macular Edema	121
		6.3.2	Diffuse Macular Edema	121
		6.3.3	Macular Ischemia	122

6.4	Diagnosis	122
6.5	Mechanism of Laser Therapy to Treat Diabetic	
	Macular Edema	123
6.6	Laser Therapy for DME	124
	6.6.1 Laser Photocoagulation	124
	6.6.2 Using Lasers in Conjunction with Anti-VEGF	
	Therapy	125
	6.6.3 Navigated Laser Treatment	126
	6.6 Subthreshold Micropulse Laser Therapy	128
	6.6.5 Treatment for PDR Brought on by Using Pan-Retinal	
	1 rotocoagulation	129
	6.6.6 Selective Retinal Therapy	130
6.7	Clinical Lasers and Delivery Platforms:	
	Upcoming innovations	131
6.8	Conclusion	132
	References	133
7 Dia	gnosis and Management of Sleep Bruxism Utilizing	
Las	er Therapy	141
7.1	Introduction	141
7.2	Etiology	142
7.3	Pathophysiology	144
7.4	Diagnosis	145
7.5	Treatment of Sleep Bruxism	146
7.6	Case Study of Sleep Bruxism	147
7.7	Conclusion	151
	References	151
8 Trea	atment for Osteoarthritis with Lander hnology	157
8.1	Introduction	157
8.2	Pathophysiology	159
8.3	Clinical Features	160
	8.3.1 Knee Discomfort	160
	8.3.2 Joint Stiffness	161
	8.3.3 Growth and Swelling of the Bones	161
8.4	Risk Factors	162
8.5	Diagnosis	163
8.6	Laser Therapy for Osteoarthritis	164
8.7	Conclusion	165
	References	166

9	Targ	eting Neurological Disorders with Laser Technology	171		
	9.1	Introduction	171		
	9.2	Symptoms of Brain Tumor	172		
	9.3	.3 Diagnosis			
		9.3.1 Glial Tumor	173		
		9.3.1.1 Astrocytic Tumor	173		
		9.3.1.2 Cancers of the Oligodendroglia	174		
	9.4	Risk Factors	175		
		9.4.1 Jonizing Radiation	175		
		9.4.2 Kediofrequency Electromagnetic Radiation	175		
		9.4.3 Genetic Factors	177		
		9.4.4 N-Nitroso Compounds (NOCs)	177		
	9.5	Ablative Methods for Brain Surgery	178		
		9.5.1 Radiofrequency Thermal Ablation	178		
		9.5.2 Laser interstitial Thermal Therapy	180		
		9.5.3 Stereotaric Radiosurgery	180		
		9.5.4 Thermal Listion Using Concentrated Ultrasound	181		
	9.6	Brain Tumor	181		
		9.6.1 Radiofrequer , Microwaves	181		
		9.6.2 Laser Interstiti a Iner notherapy	182		
		9.6.3 Ultrasound	183		
		9.6.4 Radiosurgery	183		
	9.7	Epilepsy Surgery	184		
	9.8	Conclusion	185		
		References	185		
10	Diag	gnosis of Onychomycosis Using Laser Therapy	193		
	10.1	Introduction	193		
	10.2	Etiology and Epidemiology	194		
	10.3	Clinical Manifestation	195		
	10.4	Diagnostic Techniques 1			
	10.5	Complication	199		
	10.6	Treatment of Onychomycosis	199		
		10.6.1 Topical Antifungal Therapy	199		
		10.6.2 Laser Therapy	200		
		10.6.3 Photodynamic Therapy	201		
		10.6.4 Combination of Laser Therapy with Topical			
		Antifungal Therapy	202		
	10.7	Prevention	203		
	10.8	Prognosis	203		

x Contents

	10.9	Conclu	ision	203
		Referen	nces	204
11	Laser	Treatm	ent for Wound Healing	211
	11 1	Introdu	uction	211
	11.2	Effect	of Photon on Cell Level	212
	11.3	Wound	Healing Physiology	212
	1110	1131	Physiology of Scar Formation	214
		11.2 2	Pathology of Scar Formation	215
	11.4	Tre .ar	ent of Superficial Wounds with Laser Light	216
	11.5	Low-L	el Laser Therapy for Wound Healing	218
	11.6	Laser ¹	evices for Wound Healing	219
		11.6.1	Le er Debridement	219
		11.6.2	F ⁻ .ct ⁱ onal Photothermolysis	220
		11.6.3	Photobiomodulation Therapy	221
		11.6.4	Anti merobial Blue Light	221
		11.6.5	Photodynamic Therapy	222
		11.6.6	Vascular 1 ser	224
	11.7	Conclu	ision	224
		Referen	nces	225
12	Laser	Therap	ov in Dentistry	237
	12.1	Introdu	uction	237
	12.2	Classif	ication of Laser in Depristry	238
		12.2.1	Hard Tissue Laser	238
		12.2.2	Low-Level Lasers or Sott T: sue Lasers	238
	12.3	Mecha	nism of Action of Laser	238
	12.4	Laser-	Tissue Interaction	239
		12.4.1	Reflected	239
		12.4.2	Absorbed	239
		12.4.3	Transmitted	240
		12.4.4	Scattered	240
	12.5	Advant	tages and Disadvantages of Laser 'Inerapy	240
	12.6	Diagnosis		240
	12.7	Clinical Applications		
		12.7.1	Cavity Preparation	241
		12.7.2	Caries Removal	241
		12.7.3	Restoration Removal	242
		12.7.4	Etching	242
		12.7.5	Gingiva and Periodontium	243
		12.7.6	Pain	243
		12.7.7	Oral Surgery	244

267

		12.7.8 Premalignant and Malignant Lesions	244
12.8 Ap		Applications of Photodynamic Therapy	245
		12.8.1 PDT in Oral Surgery	245
		12.8.2 Dental Preventive Treatment	248
	12.9	Laser Safety	249
	12.10	Conclusion	250
		References	250
13	Case	Studies of Different Diseases Treated by Laser	Therapy 257
	13.1	Int ⁻ Jd ¹ ction	257
	13.2	Case S ⁺ .dies of Cancer Diseases	258
	13.3	Case S' ad'es of Neurological Disorders	259
	13.4	Conclusio	259
		Reference	263

Index

n obootisteb. pub

physiological responses or secondary processes, such as decreased pain and inflammation and improved tissue repair [11, 12].

Oxygen (O_2), the stable superoxide anion, and hydrogen peroxide (H_2O_2), its consequence (with the addition of two protons), have both been shown in a few studies to be generated by light's interaction with mitochondria in cells via cytochrome C oxidase [5]. Burdon and Davies independently demonstrated that a relatively low concentration of H_2O_2 , between 0.1 and 0.5 mol/10⁷ cells, elicited bio-stimulatory effects. It was recently revealed that the metabolic activities of human glioblastoma might be suppressed by low-average-intensity radiation pulsed at picosecond durations and near-infrared (1,552 nm) wavelengths. MTS is a metabolic test that was used to assess cellular metabolic activities across a range of fluence exposures.

Laser-induced metabolic inhibition can be mitigated to some extent by pre-treating the growm medium with the enzyme catalase before exposing the cells to the laser [13, 12].

Without catalase ther $_{P}$, cellular metabolic activity reverts to its control/sham-exposed levels after initially increasing. However, the loss in cellular metabolic activity $_{e}$ reatly attenuated when catalase is present (the catalase acts by removing lyaroog n peroxide that has traveled outside of the cells) [12, 15], indicating a functional role of H₂O₂ (Figure 1.6).

Figure 1.6 Mechanism of laser therapy in tissue.

1.5 Implications of Lasers on Tissues

1.5.1 Photothermal Impacts

Tissue chromophores (pigments) convert laser energy into heat through an interaction with the laser's wavelength. Pigment, hemoglobin, and xanthophyll are some of the chromophores found in ocular tissue that absorb lasers at visible light wavelengths; proteins absorb at UV wavelengths; and water absorb infrared radiation. Tissue reaction depends on both the absolute temperature and the length of exposure. Vaporization, coagulation, and necros i care all possible outcomes [16].

1.5.2 Photochem² al Effects

Photoreceptors under so chemical changes when exposed to light; isomerization of 11-cis retinal $12 a^{11}$ trans retinal is one example. A photosensitive dye is infused intravenously corring photodynamic therapy, and a particular laser wavelength is used to stimulate the dye's molecules. Cell structures in regions where the dye concept rates, such as the walls of vascular tissue, are irreversibly oxidized when the excited photosensitizer passes its energy to tissue oxygen, creating radica. 17, 18].

1.5.3 Photomechanical Effects

Photo disruption results from a sudden increase in tissue temperature over the vaporization threshold brought on b laser absorption. High laser energy delivered in the microsecond-to-nanosecond range could ionize plasma status and vaporize transparent occlus tissues without pigment absorption, leading to temperatures above 100 c and explosive vapor bubbles that could rupture nearby tissue or eject fragments of tissue from surfaces. The excimer laser used in corneal operations to use on this principle [19, 20].

1.6 Spectroscopy Using a Laser-Induced Breakdown Mechanism: Its Use in Medicine and Other Fields

In optical emission spectroscopy (also known as laser-induced breakdown spectroscopy, or LIBS) [21–23], high-energy laser beams interact with matter, creating plasma, whose light can then be used in many applications

(solids, liquids, or gases). If the plasma's distinctive parameters have a large enough effect on the emitted light, then the atomic spectroscopic study of the light can reveal a wealth of information on the underlying physical processes and elemental structure of plasmas [24].

Over the past two decades, LIBS has attracted more and more attention due to its usefulness in a variety of fields, including manufacturing, ecology, medicine, and the forensic arts [25–27]. It is a useful and sensitive new tool for elemental analysis. With the added benefit of requiring little to no sample preparation, it is a highly adaptable method for determining the elemental makeup of samples in a short amount of time.

Recently, LIE or been widely used in the investigation of human tissue samples and other biological and medical systems.

Generally speaking there are two basic types of medical uses for LIBS [28]:

- (1) Clinical speciations from humans (such as teeth, bones, urinary bladde, and gallstones, liver tissues, or other tissue samples)
- (2) Examining and an long microorganisms (such as bacteria, molds, yeasts, at a viewes)

About the first type of use, Patla' used the LIBS method to investigate the contribution of individual factors to gallstone production (under emphysema and mucosal gall bladder conditions) [29]. The samples were collected in the Purvanchal area of Uttar Prolesh, India. The goal of the study was to determine whether or not gall cones developed in different environments (with different diets, for example) have significantly different elemental compositions. According to the re ults, gallstones are more common in female patients than in male patients Patients who regularly used tobacco, chewed tobacco or smoked cigarette, or imbibed alcoholic beverages were shown to be at increased risk. The according to pushed the LIBS method's boundaries by using it to examine human fingernails and baby teeth in real-time. The roots of caries can be revealed through elemental analysis of tooth samples, a major problem in oral health. Cairo University's Lasers and Emerging Materials (LLNM) Laboratory used LIBS for yet another medicinal application. It was used for the detection and staging of liver cancer [30]. The plasma on the liver's surface was started using radiation from a 532 nm neodynium-doped (ND): YAG laser at a power density of 5.7 108 W/ cm².

The emitted light was examined, and its analysis revealed the presence of cancerous tissue's trace constituents. The radiation emitted from the materials was captured using an Echelle-type spectrograph, and a 25 μ m multimode quartz optical cable was used to transmit the signal. By linking an intensified charge coupled device (ICCD) camera to the spectrograph, the gathered light may be scanned over the spectrum (Figure 1.7). The Kestrel-Spec software directed the machine to take pictures from the available camera. A single-shot detection within the system extended from 200 to 1,200 nm in wavelength.

A spam 16 software spectrum analyzer was utilized to determine the various components. A low-pressure Hg- lamp was utilized to calibrate the emission spectrum's wavelengths, while all the relative intensities (sensitivity) in the emission Deuterium halogen lamp lights were used to calibrate the spectra. The researcher measured the levels of Mg, K, Ca, Na, Fe, Mn, and Cu in the liver deques. To decide on cancer classification, an artificial neural network (ANN) was given the results from the LIBS approach. The neural network developed at LLNM is optimal for classifying a benign tissue from a cancerous tisses. There was a dramatic increase in the amounts of several trace elements in melignant tissues compared to normal tissues, and this increase occurred throughout all stages and grades of the disease. This used the LIBS approach allowed the researchers to draw the following conclusions:

The capacity to diagnose malignant cells and tissues, the method's ease of use, and the reduction in the chan as of contamination and misdiagnosis all speak in favor of it.

Since reliable results can be obtained from a relatively small sample size, the procedure is non-invasive, and it provides r al-time quantification of all

Figure 1.7 Experimental preparation for laser-induced breakdown spectroscopy.