Contents

PREFACE VII | ACKNOWLEDGMENTS IX

1 Histology & Its Methods of Study 1

Preparation of Tissues for Study 1
Light Microscopy 4
Electron Microscopy 8
Autoradiography 9
Cell & Tissue Culture 10
Enzyme Histochemistry 10
Visualizing Specific Molecules 10
Interpretation of Structures in Tissue Sections 14
Summary of Key Points 15
Assess Your Knowledge 16

2 The Cytoplasm 17

Cell Differentiation 17 The Plasma Membrane 17 Cytoplasmic Organelles 27 The Cytoskeleton 42 Inclusions 48 Summary of Key Points 51 Assess Your Knowledge 52

3 The Nucleus 53

Components of the Nucleus 53 The Cell Cycle 58 Mitosis 61 Stem Cells & Tissue Renewal 65 Meiosis 65 Apoptosis 67 Summary of Key Points 69 Assess Your Knowledge 70

4 Epithelial Tissue 71

Characteristic Features of Epithelial Cells 72
Specializations of the Apical Cell Surface 77
Types of Epithelia 80
Transport Across Epithelia 88
Renewal of Epithelial Cells 88
Summary of Key Points 90
Assess Your Knowledge 93

5 Connective Tissue 96

Cells of Connective Tissue 96
Fibers 103
Ground Substance 111
Types of Connective Tissue 114
Summary of Key Points 119
Assess Your Knowledge 120

6 Adipose Tissue 122

White Adipose Tissue 122 Brown Adipose Tissue 126 Summary of Key Points 127 Assess Your Knowledge 128

7 Cartilage 129

Hyaline Cartilage 129
Elastic Cartilage 133
Fibrocartilage 134
Cartilage Formation, Growth, & Repair 134
Summary of Key Points 136
Assess Your Knowledge 136

8 Pane 138

one Cells 138

Bone Matrix 143

cerio teum & Endosteum 143

Typer 18 one 143

Uste 18 sis 148

Bone P 152

Metabolic nole of Bone 153

Joints 155

Summary of Key Points 158

Assess Your Knowledge 159

9 Nerve Tissue & the Nervous System 161

Development of Nerve Tissue 161 Neurons 163 Glial Cells & Neuronal Activity 168 Central Nervous System 175 Peripheral Nervous System 182 Neural Plasticity & Regeneration 187 Summary of Key Points 190 Assess Your Knowledge 191

10 Muscle Tissue 193

Skeletal Muscle 193
Cardiac Muscle 206
Smooth Muscle 208
Regeneration of Muscle Tissue 213
Summary of Key Points 213
Assess Your Knowledge 214

11 The Circulatory System 215

Heart 215
Tissues of the Vascular Wall 219
Vasculature 220
Lymphatic Vascular System 232
Summary of Key Points 235
Assess Your Knowledge 235

12 Blood 237

Composition of Plasma 237 Blood Cells 239 Summary of Key Points 252 Assess Your Knowledge 253

13 Hemopoiesis 254

Stem Cells, Growth Factors, & Differentiation 254
Bone Marrow 255
Maturation of Erythrocytes 258
Maturation of Granulocytes 260
Maturation of Agranulocytes 263
Origin of Platelets 263
Summary of Key Points 265
Assess Your Knowledge 265

14 The Immune System & Lymphoid Organs 267

Innate & Adaptive Immunity 267
Cytokines 269
Antigens & Antibodies 269
Antigen Presentation 271
Cells of Adaptive Immunity 273
Thymus 276
Mucosa-Associated Lymphoid Tissue 281
Lymph Nodes 282
Spleen 286
Summary of Key Points 293
Assess Your Knowledge 294

15 Digestive Tract 295

General Structure of the Digestive Tract 295
Oral Cavity 298
Esophagus 305
Stomach 307
Small Intestine 314
Large Intestine 318
Summary of Key Points 326
Assess Your Knowledge 327

16 Organs Associated with the Digestive Tract 329

Salivary Glands 329
Pancreas 332
Liver 335
Biliary Tract & Gallbladder 345
Summary of Key Points 346
Assess Your Knowledge 348

17 The Respiratory System 349

Nasal Cavities 349
Pharynx 351
Larynx 352
Trachea 354
Bronchial Tree & Lung 354
Lung Vasculature & Nerves 367
Pleural Membranes 368
Respiratory Movements 369
Summary of Key Points 369
Assess Your Knowledge 370

18 Skin 371

Epidomis 372

Openis 380

Subcutaneous Tissue 381

Sensory Receptors 382

Hair 383

Nails 384

Skin Glands 385

Skin Repair 388

Summary of Key Points 391

Assess Your Knowledge 392

19 The Urinary System 393

Kidneys 393
Blood Circulation 394
Renal Function: Filtration, Secretion, & Reabsorption 395
Ureters, Bladder, & Urethra 406

Summary of Key Points 410 Assess Your Knowledge 411

20 Endocrine Glands 413

Pituitary Gland (Hypophysis) 413
Adrenal Glands 423
Pancreatic Islets 427
Diffuse Neuroendocrine
System 429
Thyroid Gland 430
Parathyroid Glands 432
Pineal Gland 435
Summary of Key Points 437
Assess Your Knowledge 437

21 The Male Reproductive System 439

Testes 439
Intratesticular Ducts 449
Excretory Genital Ducts 449
Accessory Glands 451
Penis 456
Summary of Key Points 457
Assess Your Knowledge 459

22 The Female Reproductive System 460

Ovaries 460
Uterine Tubes 470
Major Events of Fertilization 471
Uterus 471
Embryonic Implantation, Decidua, & The Placenta 478
Cervix 482
Vagina 483
External Genitalia 483
Mammary Glands 483
Summary of Key Points 488
Assess Your Knowledge 489

23 The Eye & Ear: Special Sense Organs 490

Eyes: The Photoreceptor System 490 Ears: The Vestibuloauditory System 509 Summary of Key Points 522 Assess Your Knowledge 522

APPENDIX 525
FIGURE CREDITS 527
INDEX 529

FIGURE 2-5 Major mechanisms by which molecules cross membranes.

Lipophilic and some small, uncharged molecules can ass membranes by simple diffusion (a).

Most ions cross membranes in multipass proteins called channels (b) whose structures include transmembrane ion-specific pores

Many other larger, water-soluble molecules require bin sing to sites on selective carrier proteins (c), which then change weir

conformations and release the molecule to the other side of the membrane.

Diffusion, channels and most carrier proteins translocate substances across membranes using only kinetic energy. In contrast, pumps are carrier proteins for active transport of ions or other solutes and require energy derived from ATP.

Exocytosis of macromolecules made by cells occurs via either of two pathways:

- Constitutive secretion is used for products that are released from cells continuously, as soon as synthesis is complete, such as collagen subunits for the ECM.
- Regulated secretion occurs in response to signals coming to the cells, such as the release of digestive enzymes from pancreatic cells in response to specific stimuli. Regulated exocytosis of stored products from epithelial cells usually occurs specifically at the apical domains of cells, constituting a major mechanism of glandular secretion (see Chapter 4).

Portions of the cell membrane become part of the endocytotic vesicles or vacuoles during endocytosis; during exocytosis, membrane is returned to the cell surface. This process of membrane movement and recycling is called **membrane trafficking** (see Figure 2-7a). Trafficking of membrane components occurs continuously in most cells and is not only crucial for maintaining the cell but also for physiologically important processes such as reducing blood lipid levels.

In many cells, subpopulations of vacuoles and tubules within the endosomal compartment accumulate small vesicles within their lumens by further invaginations of their limiting membranes, becoming multivesicular bodies. While multivesicular bodies may merge with lysosomes for selective degradation of their content, this organelle may also fuse with the plasma membrane and release the intraluminal vesicles outside the cell. The small (50-150 nm diameter) vesicles released

are called exosomes, some of which can fuse with other cells transferring their contents and membranes in one form of cell-to-cell communication.

Signal Reception & Transduction

Cells no inulticellular organism communicate with one another to regul accessed and organ development, to control their growth and division, and to coordinate their functions. Many adjacent cells form communicating gap junctions that couple the cells and allow exchange of ions and small molecules (see Chapter 4).

Cells also about 25 families of receptors to detect and respond to acous extracellular molecules and physical stimuli. Each cell are in the body contains a distinctive set of cell surface and cytopassmic receptor proteins that enable it to respond to a complementary set of signaling molecules in a specific, programmed way. Cells bearing receptors for a specific ligand are referred to as target cells for that molecule. The routes of signal molecules from source to target provide one way to categorize the signaling processes:

- In endocrine signaling, the signal molecules (here called hormones) are carried in the blood from their sources to target cells throughout the body.
- In paracrine signaling, the chemical ligand diffuses in extracellular fluid but is rapidly metabolized so that its effect is only local on target cells near its source.
- In synaptic signaling, a special kind of paracrine interaction, neurotransmitters act on adjacent cells through special contact areas called synapses (see Chapter 9).

for directed vesicle fusion include various Rab proteins and other enzymes, receptors and specific binding proteins, and fusion-promoting proteins that organize and shape membranes. Depending on the activity of these proteins, vesicles are directed toward different Golgi regions and give rise to lysosomes or secretory vesicles for exocytosis.

As indicated in Figure 2-14, Golgi saccules at sequential locations contain different enzymes at different cis, medial, and trans levels. Enzymes of the Golgi apparatus are important for glycosylation, sulfation, phosphorylation, and limited proteolysis of proteins. Along with these activities, the Golgi apparatus initiates packaging, concentration, and storage of secretory products. Protein movements through the Golgi

and the control of protein processing are subjects of active research.

Secretory Granules

Originating as condensing vesicles in the Golgi apparatus, secretory granules are found in cells that store a product until its release by exocytosis is signaled by a metabolic, hormonal, or neural message (regulated secretion). The granules are surrounded by the membrane and contain a concentrated form of the secretory product (Figure 2-15). The contents of some secretory granules may be up to 200 times more concentrated than those in the cisternae of the RER.

The main molecular processes are listed at the right, with the major compartments where they occur. In the trans Golgi network,

the proteins and glycoproteins combine with specific receptors that guide them to the next stages toward their destinations.

HAP

-

FIGURE 2-24 Centrosome.

The centrosome is the microtubule-organizing center for the mitotic spindle and consists of paired centrioles. The TEM reveals that the two centrioles in a centrosome exist at right angles to each other in a dense matrix of free tubulin subunits and other proteins. Each centriole consists of nine microtubular triplets. In a poorly understood process, the centrosome duplicates itself and the pair is divided equally during a cell's interphase, each half

having a duplicated centriole pair. At the onset of mitosis, the two dughter centrosomes move to opposite sides of the nucleus and by the two poles of the mitotic spindle of microtubules attaching to che mosomes.

(Micrograp's used with permission from Dr Gwen V. Childs, University or means as for Medical Sciences, Department of Neurobiology and Developmental Sciences)

within networks of F-actin increases cytoplasmic viscosity, while severing (and capping) the filaments tends to decrease viscosity. The lengths and other physical properties of actin filaments are controlled by various other types of actin-binding proteins, including those indicated in Figure 2-26.

Just as the molecular motors kinesin and dynein move structures along microtubules, various myosin motors use ATP to transport cargo along F-actin. Movement is usually toward the barbed (+) ends of actin filaments; myosin VI is the only known myosin that moves in the other direction. Interactions between F-actin and myosins form the basis for various cell movements:

- Transport of organelles, vesicles, and granules in the process of cytoplasmic streaming
- Contractile rings of microfilaments with myosin II constricting to produce two cells by cytokinesis during mitosis

 Membrane-weiated molecules of myosin I whose movements al maicrofilaments produce the cell surface changes during endocytosis

Stabilized arrays of actin filaments integrated with arrays of thicker (16 nm) myosin filaments permit very forceful contractions in specialized cells such as those of muscle (see Chapter 10).

Intermediate Filaments

The third class of cytoskeletal components includes filaments intermediate in size between the other two, with a diameter averaging 10 nm (Table 2-4). Unlike microtubules and actin filaments, these intermediate filaments are stable, confer increased mechanical stability to cell structure, and are made up of different protein subunits in different cell types. More than a dozen proteins, ranging in size from 40 to 230 kDa, serve as subunits of various intermediate filaments and can